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Abstract

Fine-grained visual categorization (FGVC) is the
discrimination of similar subcategories, whose
main challenge is to localize the quite subtle visual
distinctions between similar subcategories. There
are two pivotal problems: discovering which region
is discriminative and representative, and determin-
ing how many discriminative regions are necessary
to achieve the best performance. Existing methods
generally solve these two problems relying on the
prior knowledge or experimental validation, which
extremely restricts the usability and scalability of
FGVC. To address the “which” and “how many”
problems adaptively and intelligently, this paper
proposes a stacked deep reinforcement learning ap-
proach (StackDRL). It adopts a two-stage learn-
ing architecture, which is driven by the seman-
tic reward function. Two-stage learning localizes
the object and its parts in sequence (“which”), and
determines the number of discriminative regions
adaptively (“how many”), which is quite appealing
in FGVC. Semantic reward function drives Stack-
DRL to fully learn the discriminative and concep-
tual visual information, via jointly combining the
attention-based reward and category-based reward.
Furthermore, unsupervised discriminative localiza-
tion avoids the heavy labor consumption of label-
ing, and extremely strengthens the wusability and
scalability of our StackDRL approach. Compar-
ing with ten state-of-the-art methods on CUB-200-
2011 dataset, our StackDRL approach achieves the
best categorization accuracy.

1

Fine-grained visual categorization (FGVC) is to discriminate
the similar subcategories belonging to the same basic cate-
gory, such as the fine distinction of animals, plants, cars and
aircraft models. These subcategories look similarly in the
global appearance, and only have a few subtle distinctions
in the local parts of the object. It is quite challenging to draw
the distinctions between them even for people, not to mention
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Figure 1: Illustration of the gazes when people recognize an image.

the computer. People prefer to gaze at the object even in the
scenario that it is hard to distinguish the object from the back-
ground [Neider and Zelinsky, 2006]. Eye movements always
tend to direct to the regions of high feature density, texture,
and color contrast. These latter influences can all be consid-
ered as salient factors affecting object importance. For exam-
ple, to recognize an image, we always first gaze at where the
object is, then gaze at those parts which are distinct in the
object, and finally categorize the image. The two processes
of gaze are shown in Figure 1.

Inspired by the above works, existing FGVC methods fo-
cus on the localization of discriminative regions in the im-
age, such as the object and its parts, to achieve good cate-
gorization performance. There are two pivotal problems in
the discriminative localization: (1) “Which” problem: dis-
cover which region is more discriminative and representative.
(2) “How many” problem: determine how many discrimina-
tive regions are necessary to achieve the best performance.
Existing methods generally solve these problems relying on
the prior knowledge or experimental validation, which ex-
tremely restricts the usability and scalability of fine-grained
visual categorization.

Zhang et al. propose the Part-based R-CNN [Zhang et al.,
2014], which utilizes R-CNN [Girshick et al., 2014] with
geometric constraints to detect object and its parts. Three
discriminative regions are first localized in the image, cor-
responding to the object, the head and body of the object re-
spectively. Huang et al. propose the Part-Stacked CNN archi-
tecture [Huang et al., 2016], which first utilizes a fully con-
volutional neural network to localize the parts of the object,
and then adopts a two-stream network to encode object-level
and part-level features simultaneously. Sixteen discriminative
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regions are first localized, corresponding to the object and its
fifteen annotated parts. We can conclude that the above meth-
ods generally address the “which” and “how many” problems
based on the prior knowledge. Researchers rely on the an-
notated information, such as the ground-truth bounding box
and part locations, to determine which region is discrimina-
tive and how many discriminative regions are necessary in the
categorization. However, not all the annotated information
is significant for the categorization. For example, the “eye”
part is too similar to draw the distinctions between the similar
subcategories, which is not necessary and helpful for catego-
rization. The dependence on prior knowledge makes the dis-
covery process of discriminative regions subjective, and need
to customize for different FGVC tasks.

Therefore, most researchers begin to avoid relying on the
prior knowledge, and focus on automatically discovering
which region is discriminative. Xiao et al. propose a two-
level attention method [Xiao et al., 20151, which utilizes the
attention mechanism of the convolutional neural networks
(CNNis) to select region proposals corresponding to the ob-
ject and its parts, avoiding the utilization of the ground-truth
bounding box and part locations. In this method, two discrim-
inative regions are used. Zhang et al. incorporate deep convo-
lutional filters for both parts selection and description [Zhang
et al., 2016]. In this method, the number of discriminative
regions is set to 6 in order to achieve the best categorization
accuracy. These methods localize the discriminative regions
through weakly supervised localization method, but generally
set the number of discriminative regions based on the exper-
imental validation. For example, Zhang et al. set the num-
ber of discriminative regions as 6 for CUB-200-2011 dataset
[Wah ez al., 2011], but 5 for Stanford Dogs dataset [Khosla et
al., 2011] in their experiments [Zhang et al., 2016]. Besides,
the number of discriminative regions is set fixed for each sub-
category, which is contrary to the fact that the numbers of
representative characteristics are different in variant subcat-
egories. The experimental strategy of setting how many dis-
criminative regions exploited and the fixed number setting are
not flexible and limited for fine-grained visual categorization.

Therefore, for addressing the “which” and “how many”
problems adaptively and intelligently, this paper proposes a
stacked deep reinforcement learning approach (StackDRL).
It adopts a two-stage learning architecture, and its learning is
driven by semantic reward function. The main contributions
of our StackDRL approach can be summarized as follows:

(I) Two-stage learning is proposed to localize the object
and its parts (“which”) in a sequential way, and determines
the number of discriminative regions (“how many”) adap-
tively, which is quite appealing in fine-grained visual catego-
rization. The Stage-I DRL, named ObjectDRL, is to remove
the background noise in object alignment, only reserve the
foreground. The Stage-II DRL, named PartDRL, is to further
mine the compelling regions of the object, which are variant
in numbers and scales for different subcategories. They pro-
vide different but complementary visual information to boost
the fine-grained representation learning as well as the catego-
rization accuracy.

(IT) Semantic reward function is proposed to drive Stack-
DRL to fully learn the valuable and characteristic visual in-

742

formation, via jointly combining the attention-based reward
and category-based reward functions. Attention-based re-
ward improves the localization accuracy by driving Stack-
DRL to localize the regions with more discriminative infor-
mation. Category-based reward improves the localization ac-
curacy by driving StackDRL to localize the regions with more
conceptual information. Both of them boost the performance
of fine-grained localization and categorization.

(III) Unsupervised discriminative localization is to fur-
ther explore the localization performance in an unsupervised
manner without using any annotated information, such as cat-
egory label, ground-truth bounding box and part locations.
It avoids the heavy labor consumption of labeling, and ex-
tremely strengthens the usability and scalability of our Stack-
DRL approach, boosting the practical application of fine-
grained visual categorization.

2 Stacked Deep Reinforcement Learning

In this section, we detail the proposed stacked deep reinforce-
ment learning approach (StackDRL). It decomposes the dis-
criminative localization learning into two stages, as shown in
Figure 2. (I) Stage-I DRL (ObjectDRL): It distinguishes
the object from the background, and represents the features
of the global appearance. (II) Stage-II DRL (PartDRL): It
discovers the characteristics of the object, and tries to draw
the distinctions between similar subcategories.

2.1 Problem Formulation

For a given image I, we formulate the discriminative local-
ization as the problem of maximizing a confidence function
fe : B — B over the set of image regions B:

b" = argmax fe(b) (1)
We solve the problem via Markov decision process (MDP),
which is well suitable for modeling the discrete time sequen-
tial decision making process. In the MDP, there define a set
of actions A, a set of states .S, and a reward function R. In
the following subsections, we introduce the details of Object-
DRL and PartDRL respectively, as well as the training details
of our StackDRL model.

2.2 ObjectDRL

In ObjectDRL, the given image I is considered as the envi-
ronment, in which the agent localizes a region at each step by
conducting one action of A. The agent has the corresponding
state after conducting one action, which contains the informa-
tion of the current localized region and the action history. For
each action, a corresponding reward, may be positive or nega-
tive, will feedback to the agent at the training phase. The goal
of the agent is to localize a region that accurately contains the
target object.

Discriminative Localization Actions

Inspired by Tree-RL [Jie ez al., 2016], we define the set of dis-
criminative localization actions A as two action groups due to
their different effects, as shown in Figure 3. ObjectDRL and
PartDRL adopt the different action groups. In ObjectDRL,
only action group 1 is adopted. It consists of five scaling
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Figure 2: An overview of the proposed StackDRL approach.

actions that can be applied to localize the region of object,
and one action to terminate the localization process. Each
of the scaling actions scales the current region to a certain
sub-region with the scale ratio «, corresponding to scaling
the current region to the top left corner, bottom left corner,
top right corner, bottom right corner and the center, where
a € [0,1], set to 0.9 in our experiments. The scaling actions
can localize the objects with different scales, which boosts the
scalability of the localization. Once an action is conducted on
the current region, the content of the region will be changed
deterministically, which means that the state is changed. Fi-
nally, the only action that does not scale the current region is a
trigger to indicate that the current region accurately contains
the target object.

States

At action step ¢, the state of the agent is represented as S
(v, hy), where v, denotes the feature vector of the current
localized region in the image, h; denotes the history vector of
conducted actions. The following paragraphs introduce the
details of v; and h;.

The feature vector v; € R? is the output of one layer in the
CNN model, which is pre-trained on the ImageNet dataset
[Deng et al., 2009]. In our experiment, we apply the 16-
layer VGGNet [Simonyan and Zisserman, 2014] as the ba-
sic CNN model. Feature maps of the layer “con5.3" are
extracted as the initial features, and then are connected to a
fully-connected layer with 4096 neurons. So the dimension
of the final feature vector d = 4096. Inspired by Fast R-CNN
[Girshick, 2015], Rol Pooling is applied to accelerate feature
extraction.

The history vector b, € RI401XNster ig a binary vector to
denote which actions have been conducted in the past. Each
action is represented by a |Ap|-dimensional binary vector,
where only the action has been conducted, its corresponding
value is 1, otherwise 0. No more than one value is 1 due to the
fact only one action is conduct at each action step. |Ap| = 6
in ObjectDRL. N, denotes a pre-defined maximal action
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Figure 3: An overview of the discriminative localization actions.

execution number per image, set to 10 in our experiments,
which makes a trade-off between localization speed and ac-
curacy.

Semantic Reward Function
The reward function R reflects the effect of the conducted
action to the localization accuracy, where a positive reward
means the conducted action is a good decision to make the
localization more accurate, vice versa. We propose a seman-
tic reward function to fully learn the discriminative and con-
ceptual visual information, which consists of attention-based
and category-based reward functions.
(I) Attention-based Reward Function
Intersection-over-Union (IoU) between the current region
and the ground-truth bounding box of target object is widely
used to measure the effect of the conducted action [Jie et al.,
2016]. The reward function RA,(s,s’) denotes the reward
received when the agent changes from state s to state s’ by
conducting action a, and its definition is as follows:

RAq(s,8') = sign(IoU (¥, g) — IoU(b, g))  (2)
where b denotes the current region, b’ denotes the region ob-
tained by conducting action a on the current region b, g de-

notes the ground-truth bounding box of target object, and
IoU (b, g) = area(bn g)/area(bU g), sois ToU (¥, g).
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It relies on the ground-truth bounding box, whose labeling
is expensive. Therefore, we propose a new reward function
based on the attention information, which avoids the heavy
labor consumption. Inspired by CAM [Zhou et al., 2016], we
first extract the attention map M of the image, which indi-
cates the representative regions used by the CNN to identify
the subcategory of image.

Given an image [, the activation of neuron u in the last
convolutional layer at spatial location (z,y) is defined as
fu(z,y). The saliency value at spatial location (z, y) is com-
puted as follows:

M(z,y) = ﬁqu(:my) 3)

where M (x, y) directly indicates the importance of activation
at spatial location (x, y) for categorizing the image. We per-
form binarization operation on the saliency map with OTSU
algorithm [Otsu, 1979], and take the bounding box that covers
the largest connected area as g4ter,. Therefore, the attention-
based reward function is defined as follows:

RAa(S7 S/) = Sign(IOU(bla gatten) - IOU(b7 gatten)) (4)

The attention-based reward function fully utilizes the saliency
information of the image, and guides the agent to localize the
region with the highest saliency, which is corresponding the
region of the target object.
(IT) Category-based Reward Function

As is known to all, the category label directly provides the
conceptual information. It can guide the agent to localize the
region that is actually helpful for the categorization. There-
fore, we propose the category-based reward function, which
is defined as follows:

RC,(s,s") = sign(P.(b") — P.(b)) (5)

where function P, (e) indicates the predicted score of the cor-
responding region is categorized as subcategory c, c is the
annotated category label. The semantic reward function RO
in ObjectDRL jointly considers the attention and category in-
formation, and its definition is as follows:

RO, (s,8") = RAu(s,8") + RCq(s,5) (6)

It is noted that we define a different reward function for
the trigger following AOL [Caicedo and Lazebnik, 2015]. Its
definition is as follows:
+1,
-,

’Lf IOU(b7 gatten) >T
otherwise

ROtm’gger(Sa 3,) = { @)
where 7 is the trigger reward, and the trigger will be con-
ducted when the IoU value is over the threshold 7. 7 and 7
are set to 3 and 0.5 respectively.

2.3 PartDRL

Through the ObjectDRL, the region of the object is obtained.
In the PartDRL, we further learn to discover finer and more
discriminative regions on the localized object region, which
can represent the object with more localized and discrimina-
tive information. Like ObjectDRL, it has the corresponding
actions, states and reward function.
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Figure 4: Illustration of the tree structure scheme.

Discriminative Localization Actions

In PartDRL, we hope the agent can localize multiple regions
with different characteristics that contribute to discriminating
the similar subcategories. Unlike ObjectDRL, we adopt both
action group 1 and 2, as shown in Figure 3. Action group 1
has been described in Section 2.2. Action group 2 consists of
four local translation actions that can be applied to localize
different regions of the object, and also one action to termi-
nate the localization process. Each of the local translation ac-
tions moves the region downward, upward, towards the right,
towards the left respectively by [ times of the current region
size, where (3 € [0, 1], set to 0.1 in our experiments. In order
to localize multiple different regions, we follow Tree-RL [Jie
et al., 2016] to adopt a tree-structured search scheme, which
has two branches, one only conducts actions in group 1, and
the other one only conducts actions in group 2, as shown in
Figure 4.

States

The state is similar with ObjectDRL except for the history
vector. In PartDRL, the history vector is represented as h; €
RIAPIXNiever where |Ap| = 11, Njeyper denotes a pre-defined
maximal level of the tree structure, set to 4 to balance the
localization speed and accuracy.

Semantic Reward Function

The semantic reward function RP in PartDRL also consists
of attention-based and category-based reward functions, and
its definition is as follows:

RP,(s,8") = RA.(s,8") + RC,(s,5") 8)

where RC is the same as ObjectDRL, RA is defined as fol-
lows:

RA,(s,s") = sign(Mean(b") — Mean(b)) )

where function M ean(e) denotes the mean value of the atten-
tion map of the current region. Through the tree-structured
search scheme and the attention-based reward function, we
can localize different regions of the object, which can boost
the variance of the feature representation. Besides, the reward
function of trigger is same as ObjectDRL.

2.4 Q-learning for Discriminative Localization

We apply reinforcement learning to learn the discriminative
policy of maximizing the sum of the received rewards of
running an episode starting from the original image. Deep
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Q-network [Mnih er al., 2015] is applied to solve the rein-
forcement learning problem. The detailed architecture of our
Q-network is shown in Figure 2. Unlike [Jie et al., 2016;
Caicedo and Lazebnik, 2015], we use the fine-tuned CNN as
the feature extractor of the localized regions at each action
step. The CNN is first pre-trained on ImageNet dataset, and
then fine-tuned on the specific fine-grained dataset, such as
CUB-200-2011 [Wah et al., 2011]. It is because that fine-
tuned CNN can obtain a better attention map for each im-
age, and extract more powerful and discriminative features.
At training phase, the parameters of Q-network are updated
by the agent running multiple episodes, whose behavior is
e-greedy [Sutton and Barto, 1998]. In each step, the agent
randomly selects an action from the whole action set with
probability ¢, and selects the best action in action group 1 for
ObjectDRL with probability 1 — ¢, a random action from the
two best actions in action group 1 and 2 for PartDRL with
probability 1 — e. The update process of Q-network follows
Tree-RL [Jie ez al., 2016].

2.5 Unsupervised Discriminative Localization

In this subsection, we explore to localize the discriminative
regions in an unsupervised manner, which means none of the
annotations is used in the localization process. From Section
2.2, we know that attention map can tell which region is sig-
nificant for categorization. Besides, we know that CNN pre-
trained on ImageNet dataset has a good generalization. Con-
sidering the attention map extracted from pre-trained CNN
has bad ability to reflect the region of object but correspond
to some discriminative local regions, we only explore the
PartDRL in the unsupervised manner. Specifically, in unsu-
pervised discriminative localization, localization actions and
states are the same as PartDRL, which are described in Sec-
tion 2.3. To avoid using the annotations, we design the se-
mantic reward function RU with attention-based reward, and
its definition is the same as RA in PartDRL. But the CNN,
which is used to extract the attention map for each image,
while is not fine-tuned on the specific fine-grained visual cat-
egorization dataset. It is a pre-trained CNN on the ImageNet
dataset, which is widely used in the computer vision tasks.
So fine-grained subcategory label is not used. Besides, for the
Q-learning in discriminative localization, we initialize the pa-
rameters of convolutional layers and the first fully-connected
layer with the pre-trained CNN, and initialize the parameters
of the other fully-connected layers from a zero-mean normal
distribution with standard deviation 0.01. Its training process
is the same as PartDRL as described in Section 2.3, which is
guided by the semantic reward function RU. Thus, there is
no annotation used in the whole learning process.

2.6 Final Prediction

For a given image I, no more than N, — 1 regions are ob-
tained that correspond to the target object in ObjectDRL, and
no more than 2Vievel — 2 regions are obtained that correspond
to the discriminative regions of the object in PartDRL. Each
region is fed to the fine-tuned CNN, i.e. 19-layer VGGNet
with batch normalization [Ioffe and Szegedy, 2015], and re-
ceived its prediction vector vs.or. For the regions obtained
by ObjectDRL, we select the region with highest predicted
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Table 1: Comparisons with state-of-the-art methods on CUB-200-
2011 dataset.

Methods Train Anno. | Test Anno. | Acc. (%)
Our StackDRL Approach 86.61
CVL [He and Peng, 2017a] text 85.55
RA-CNN [Fu er al., 2017] 85.30
HCA [Cai et al., 2017] 85.30
PNA [Zhang et al., 2017] 84.70
TSC [He and Peng, 2017b] 84.69
LRBP [Kong and Fowlkes, 2017] 84.21
STN [Jaderberg et al., 2015] 84.10
NAC [Simon and Rodner, 2015] 81.01
Coarse-to-Fine [Yao et al., 2016] bbox 82.50
Coarse-to-Fine [Yao et al., 2016] bbox bbox 82.90
PG Alignment [Krause er al., 2015] bbox bbox 82.80

score. For the regions obtained by PartDRL, we select the
region with highest predicted score for each level of the tree
structure, and average the scores of the regions to get the pre-
dicted score of PartDRL. Finally, the final prediction is ob-
tained by fusing the above predictions.

3 Experiments

In this section, we present comprehensive experimental re-
sults and analyses of our StackDRL approach on CUB-200-
2011 dataset [Wah er al., 2011], and adopt Top-1 accuracy to
evaluate its effectiveness.

3.1 Implementation Details

We describe the details of StackDRL in the following four
aspect: (1) For actions, the ratios of scaling action and local
translation actions are set to 0.9 and 0.1 respectively. The
maximal action execution number N, is set to 10, and the
level of tree structure Njeye; is set to 4. (2) For reward func-
tion, the trigger reward 7 and threshold 7 are set to 3 and
0.5 respectively. (3) For Q-learning, the architecture of Q-
network is shown in Fig. 2. The region features are com-
puted via Rol Pooling layer with the size of 512 X 7 x 7, and
then concatenated with the action history vector to feed into
fully-connection layers. Finally, mean squared error (MSE)
is used to estimate the predicted values of the localization ac-
tions. We initialize the parameters of convolutional layers and
the first fully-connected layer with the fine-tuned CNN, and
initialize the parameters of the other fully-connected layers
from a zero-mean normal distribution with a standard devia-
tion 0.01. In the training phase, the parameter € starts with
1.0 and decreases by 0.1 for each epoch. It is finally fixed to
0.1 after the first 10 epochs to make the agent focus on learn-
ing from experiences generated by its own model. Thus we
obtain the model of StackDRL.

3.2 Comparisons with State-of-the-art Methods

This subsection presents the experimental results and analy-
ses of our StackDRL approach comparing with ten state-of-
the-art methods on CUB-200-2011 dataset, as shown in Table
1. For fair comparison, the annotations of training and test-
ing phases are listed, where “bbox” means the ground-truth
bounding box of the object in the image, and “text” denotes
the textual descriptions of the image. If the column is empty,
it means no annotation is used.
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Our approach achieves the best categorization accuracy
among all the methods under the same setting that neither the
ground-truth bounding box nor part locations. The best re-
sult is achieved by CVL [He and Peng, 2017al, which jointly
models visual and textual information. It utilizes extern tex-
tural descriptions of the image in the training phase. But our
StackDRL approach still achieves a 1.06% improvement than
CVL. RA-CNN [Fu et al., 2017] achieves the categorization
accuracy of 85.30%, which utilizes three regions in differ-
ent scales. Our StackDRL approach is 1.31% higher than it.
PNA trains eleven part detectors to localize the discriminative
regions. TSC [He and Peng, 2017b] localizes three discrim-
inative regions to achieve the better categorization accuracy,
including one object and two discriminative parts. These ex-
isting methods generally set the number of discriminative re-
gions depended on the prior knowledge or experimental val-
idation, which is not flexible and limited for fine-grained vi-
sual categorization. While our StackDRL ties to solve this
problem, via adaptively localizing the discriminative regions
for different images in different subcategories, and achieves
the best categorization accuracy. Even comparing with the
methods which utilize the ground-truth bounding box in train-
ing phase or even in testing phase, our StackDRL approach
still achieves better categorization accuracy.

3.3 Effectiveness of Each Component in StackDRL

Detailed experiments are performed on our StackDRL ap-
proach in the following aspects:

Effectiveness of Each Stage in StackDRL
From Table 2, we can observe that:

(I) Comparing with the “Baseline”, which utilizes the fine-
tuned 19-layer VGGNet to recognize the original image, Our
PartDRL brings a 2.41% (80.82% — 83.23%) improvement.
It is because the good ability of PartDRL to localize the dis-
criminative regions. These regions point out the subtle and lo-
cal distinctions that are distinguished from other similar sub-
categories. PartDRL enhances the feature representation with
more variances and discrimination.

(IT) ObjectDRL boosts the categorization accuracy signif-
icantly, which brings a 4.47% improvement compared with
“Baseline”. It is also 2.06% higher than PartDRL. It is be-
cause that the localized region of ObjectDRL contains both
the global features reflecting the appearance, and the local
features reflecting the salient visual information.

(IIT) The combination of ObjectDRL and PartDRL can fur-
ther achieve more accurate result than only one-stage DRL,
i.e. 86.61% vs. 85.29% and 83.23%. Comparing with “Base-
line”, an improvement of 5.79% is achieved. It shows the
complementarity of ObjectDRL and PartDRL as well as the
effectiveness of the two-stage learning architecture. Object-
DRL and PartDRL have different but complementary gazes
at different regions of the image, providing more salient and
variant visual information to boost the fine-grained represen-
tation learning as well as the categorization.

Effectiveness of Semantic Reward Function

We conduct experiments to show the effectiveness of the pro-
posed semantic reward function. “RA” denotes the attention-
based reward functions, and “RC” denotes the category-based
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Table 2: Effectiveness of each stage in StackDRL.

Methods Acc. (%)
Our StackDRL Approach 86.61
ObjectDRL 85.29
PartDRL 83.23
Baseline 80.82

Table 3: Effectiveness of semantic reward function.

Methods Acc. (%)
Our StackDRL Approach 86.61
RA 85.79
RC 85.23
Table 4: Effectiveness of UDL.
Methods Acc. (%)
Our StackDRL Approach 86.61
UDL 83.29
PartDRL 83.23

reward function. From Table 3, we can observe that: (I)
Attention-based reward and category-based reward achieve
similar categorization accuracy, which shows that the atten-
tion information and category information play similar roles
in the fine-grained visual categorization. (II) The joint ap-
plication of attention-based and category-based reward func-
tions further improve the categorization accuracy due to the
fact that the two reward functions focus on different but com-
plementary aspects: attention-based reward provides the dis-
criminative visual information, and category-based reward
provides the conceptual visual information.

3.4 Effectiveness of UDL

In this subsection, we explore the effectiveness of unsuper-
vised discriminative localization (denoted as “UDL” in Ta-
ble 4) in fine-grained visual categorization task. From Ta-
ble 4, we can see that the application of UDL achieves a
promising performance. It is an interesting and significant
phenomenon that UDL achieves the similar categorization ac-
curacy with PartDRL, while PartDRL utilizes the category la-
bel information. This is own to the good generation of CNN
model trained on ImageNet dataset. UDL even outperforms
the methods using the ground-truth bounding box, such as
Coarse-to-Fine (82.50% and 82.90%) [Yao et al., 2016] and
PG Alignment (82.80%) [Krause et al., 2015] shown in Table
1. This inspires us to further explore the study and application
of unsupervised discriminative localization.

4 Conclusion

This paper proposes the StackDRL for fine-grained visual
categorization. StackDRL localizes the object and its parts
via the two-stage learning process automatically, and deter-
mines the number of discriminative regions adaptively. Its
learning optimization process is driven by semantic reward
function, which leads StackDRL to fully learn the discrim-
inative and conceptual visual information, so that the per-
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formance of the localization and categorization is improved
at the same time. Furthermore, in this paper, we also ex-
plore the performance of unsupervised discriminative local-
ization, which is verified to achieve promising performance.
It strengthens the usability and scalability of our StackDRL
approach. Comparing with ten state-of-the-art methods on
FGVC dataset, our StackDRL approach achieves the best per-
formance.

In the future, we devote to improving this work in the fol-
lowing two aspects: First, unsupervised discriminative local-
ization achieves promising results, but is only applied in Part-
DRL. We will further explore to apply it in ObjectDRL and
bring more improvement in categorization accuracy. Second,
in the experimental process, we find the training phase of
DRL is time consuming and has instability. We will focus
on how to train DRL faster and more stable to achieve better
performance. Both of these two aspects will be employed to
further improve the FGVC performance.
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